Evaluation of Hyperspectral Image Classification Using Random Forest and Fukunaga-Koontz Transform

نویسندگان

  • Semih Dinç
  • Ramazan Savas Aygün
چکیده

Since hyperspectral imagery (HSI) (or remotely sensed data) provides more information (or additional bands) than traditional gray level and color images, it can be used to improve the performance of image classification applications. A hyperspectral image presents spectral features (also called spectral signature) of regions in the image as well as spatial features. Feature reduction, selection, and transformation has been a challenging problem for hyperspectral image classification due to the high number of dimensions. In this paper, we firstly use Random Forest (RF) algorithm to select significant features and then apply Kernel Fukunaga Koontz Transform (K-FKT), a non-linear statistical technique, for the classification. We provide our experimental results on AVIRIS hyperspectral image dataset that contains various types of field crops. In our experimental results, we have obtained overall classification accuracy around 84 percent for the classification of 16 types of field crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, qual...

متن کامل

A Statistical Approach for Multiclass Target Detection

Fukunaga-Koontz Transform (FKT) is a statistical technique which has many application areas for two-class classification or detection problems. In this paper, we have proposed improved target detection algorithm for hyperspectral imagery (HSI) based on enhanced FKT which gives better results for multi-class target detection problems. Hyperspectral imagery is popular for target detection applica...

متن کامل

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Fukunaga-Koontz Transform for Small Sample Size Problems

In this paper, we propose the Fukunaga-Koontz Transform (FKT) as applied to Small-Sample Size (SSS) problems and formulate a feature scatter matrix based equivalent of the FKT. We establish the classical Linear Discriminant Analysis (LDA) analogy of the FKT and apply it to a SSS situation. We demonstrate the significant computational savings and robustness associated with our approach using a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013